Resonances in coupled-channel scattering from lattice QCD

David Wilson

Old Dominion University

Based on work in collaboration with J.J. Dudek, R.G. Edwards and C.E. Thomas.

The International Workshop on Partial Wave Analysis for Hadron Spectroscopy
George Washington University,
14th April 2015.
Resonances from QCD

$$\Gamma(s) \sim \frac{1}{\rho(s) m_R^2} \frac{m_R^2 - s - is^{1/2} \Gamma(s)}{s^{1/2} \Gamma(s)}$$

$$m_R = 854.1 \pm 1.1 \text{ MeV}$$

$$g = 5.80 \pm 0.11$$

$$\Gamma_R = \frac{g^2 p_R^3}{6\pi m_R^2} = 12.4 \pm 0.6 \text{ MeV}$$

- $L = 1.9 \text{ fm}$
- $L = 2.4 \text{ fm}$
- $L = 2.9 \text{ fm}$

$m_\pi = 391 \text{ MeV}$
Coupled-channel scattering

• Most physical resonances couple to multiple channels.

• To understand the physical spectrum, applying coupled-channel methods will be essential.

• We consider here πK, where ηK can also contribute in $I=1/2$.

• The physical amplitudes have resonances in several partial waves

Aim: Obtain the scattering S-matrix from Lattice QCD
Resonances with Strangeness

Seen in Kaon beam experiments

\[p \rightarrow K^- \rightarrow K^* \rightarrow \pi^+ K, \eta K, \ldots \]

LASS at SLAC \(E_K = 11 \) GeV.
Resonances with Strangeness

Seen in Kaon beam experiments

\(K^- \rightarrow K^* \rightarrow \pi^K, \eta K, \ldots \)

LASS at SLAC \(E_k = 11 \text{ GeV} \)
Resonances with Strangeness: Partial Waves

<table>
<thead>
<tr>
<th>J^P</th>
<th>States</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^+</td>
<td>κ, $K_0^*(1430)$, ...</td>
</tr>
<tr>
<td>1^-</td>
<td>$K^*(892)$, ...</td>
</tr>
<tr>
<td>2^+</td>
<td>$K_2^*(1430)$, ...</td>
</tr>
</tbody>
</table>
Lattice calculation

- Large basis of operators including:

 "Single-meson" like operators, including bilinears and derivatives.

 "Meson-meson" like operators: Made from pairs of projected variationally-optimised single-meson operators at source and sink with definite momentum, e.g.:
 \[
 \Omega_\pi(\vec{p}_1)\Omega_K(\vec{p}_2)
 \]

- Include all Wick contractions.

- All relevant irreps and moving frames with
 \[
 p^2 = |\vec{p}_1 + \vec{p}_2|^2 \leq 4 \left(\frac{2\pi}{L} \right)^2
 \]

\[
C_{ij}(t) = \langle 0 | \mathcal{O}_i^\dagger(t) \mathcal{O}_j(0) | 0 \rangle
\]

\[
\mathcal{O}_i = \bar{\psi} \Gamma \overleftrightarrow{D} \ldots \overleftrightarrow{D} \psi
\]

\[
C(t)\nu^n(t) = \lambda_n(t)C(t_0)\nu^n(t)
\]

\[
\Omega_n^\dagger = \sum_i \nu^n_i \mathcal{O}_i^\dagger
\]
Coupled-channel scattering

\[a_t E_{cm} \]

- \(A_1^+ \)
- \(\eta' K \) \text{thr.}
- \(\eta[011]K[011] \)
- \(\pi[011]K[011] \)
- \(\eta[001]K[001] \)
- \(\pi[001]K[001] \)
- \(\eta K \) \text{thr.}
- \(\eta[000]K[000] \)
- \(\pi K \) \text{thr.}
- \(\pi[000]K[000] \)

\[L/\alpha_s \]

0.16 0.20 0.24 0.28

16 20 24
Coupled-channel scattering from lattice QCD
Coupled-channel scattering from lattice QCD
Coupled-channel extensions of Lüscher’s method

\[\text{det} \left[t_{ij}^{-1}(E) + \mathcal{M}_{ij}(E) \right] = 0 \]

Many contributors:
Lüscher
Gottlieb & Rummukainen
Christ, Kim, & Yamazaki
Kim, Sachrajda & Sharpe
He, Feng & Liu
Bernard, Lage, Meissner, and Rusetsky
Leskovec & Prelovsek
Briceño & Davoudi
Hansen & Sharpe
Gockeler et al
Guo, Dudek, Edwards & Szczepaniak
Briceño, Davoudi, Luu
+ ...
Coupled-channel extensions of Lüscher’s method

\[
\det \left[t_{ij}^{-1}(E) + \mathcal{M}_{ij}(E) \right] = 0
\]

\[S = 1 + 2i\rho \, t \]

diagonal in partial waves, mixes channels

infinite volume scattering \(t \)-matrix

known finite-volume functions
diagonal in channels, mixes partial waves
Coupled-channel extensions of Lüscher’s method

$$\det \left[t_{ij}^{-1}(E) + M_{ij}(E) \right] = 0$$
Coupled-channel scattering

Problem: Three or more unknowns for each energy level, eg:

\[S_{11} = \eta e^{2i\delta_{\pi K}} \]

\[S_{22} = \eta e^{2i\delta_{\eta K}} \]

2x2 complex matrix (or more) but only one equation.
No one-to-one relation from energy levels to amplitudes

Finite volume energy levels

Scattering Amplitudes

Extensions of Lüscher’s method
Coupled-channel scattering

Solution: Parameterise t-matrix, constrain parameters using many energy levels

E.g.: K-matrix (it’s essential that we preserve unitarity)

\[
S_{ij} = \delta_{ij} + 2i \left(\rho_i \rho_j \right)^{\frac{1}{2}} t_{ij}
\]

\[
[S^\dagger S]_{ij} = \delta_{ij}
\]

\[
\rightarrow \text{Im}[t^{-1}]_{ij} = -\rho_i \delta_{ij}
\]

- K-matrix contains everything that isn’t constrained by unitarity

\[
t_{ij}^{-1}(s) = K_{ij}^{-1}(s) - i\delta_{ij} \rho_i(s)
\]

- K must be real for real s. One option for two channel scattering:

\[
K = \frac{1}{m^2 - s} \begin{bmatrix}
 g_{\pi K}^2 & g_{\pi K} g_{\eta K} \\
 g_{\pi K} g_{\eta K} & g_{\eta K}^2
\end{bmatrix} + \begin{bmatrix}
 \gamma_{\pi K, \pi K} & \gamma_{\pi K, \eta K} \\
 \gamma_{\pi K, \eta K} & \gamma_{\eta K, \eta K}
\end{bmatrix}
\]

- m, g, γ are real free parameters. Simple to add more - more poles, or a polynomial in s.

- Simple to generalise to scattering with non-zero angular momentum.

- Can improve model by adding extra physically motivated properties - eg: Chew-Mandelstam phase space.
Coupled-channel scattering

- Describe t-matrix using K-matrix in S-wave only \rightarrow obtain a spectrum.
- Minimise a χ^2 to obtain the best agreement between the K-matrix and lattice energies.

$$K = \frac{1}{m^2 - s} \begin{bmatrix} g_{\pi K}^2 & g_{\pi K} g_{\eta K} & g_{\eta K}^2 \end{bmatrix} + \begin{bmatrix} \gamma_{\pi K, \pi K} & \gamma_{\pi K, \eta K} \\ \gamma_{\pi K, \eta K} & \gamma_{\eta K, \eta K} \end{bmatrix}.$$
Coupled-channel scattering

- Describe t-matrix using K-matrix in S-wave only \rightarrow obtain a spectrum.
- Minimise a χ^2 to obtain the best agreement between the K-matrix and lattice energies.

\[K = \frac{1}{m^2 - s} \begin{bmatrix} g_{\pi K}^2 & g_{\pi K} g_{\eta K} \\ g_{\pi K} g_{\eta K} & g_{\eta K}^2 \end{bmatrix} + \begin{bmatrix} \gamma_{\pi K, \pi K} & \gamma_{\pi K, \eta K} \\ \gamma_{\pi K, \eta K} & \gamma_{\eta K, \eta K} \end{bmatrix}. \]

\[\chi^2/N_{\text{dof}} = \frac{6.40}{15 - 6} = 0.71 \]
S-wave amplitudes

- Broad resonance in S-wave πK.
- ηK coupling is small.
- 3 subthreshold points, naturally included in an energy-level fit.

$$S_{11} = \eta e^{2i\delta_{\pi K}}$$

$$S_{22} = \eta e^{2i\delta_{\eta K}}$$

$\chi^2/N_{\text{dof}} = \frac{6.40}{15-6} = 0.71$.

\begin{align*}
m &= (0.2466 \pm 0.0020 \pm 0.0009) \cdot a_t^{-1} \\
g_{\pi K} &= (0.165 \pm 0.006 \pm 0.002) \cdot a_t^{-1} \\
g_{\eta K} &= (0.033 \pm 0.010 \pm 0.003) \cdot a_t^{-1} \\
\gamma_{\pi K, \pi K} &= 0.184 \pm 0.054 \pm 0.030 \\
\gamma_{\pi K, \eta K} &= -0.52 \pm 0.20 \pm 0.06 \\
\gamma_{\eta K, \eta K} &= -0.37 \pm 0.07 \pm 0.05
\end{align*}
More energy levels

- Many more energy levels from irreps where the mesons are **moving with respect to the lattice**.
- More than 100 usable levels.
$S+P$-waves from 80 energy levels

\[\chi^2 / N_{\text{dof}} = \frac{49.1}{61-6} = 0.89 \]

\[\chi^2 / N_{\text{dof}} = \frac{15.0}{19-4} = 1.00 \]

- Separate fits and global fits yield consistent results.
- D-wave is negligible in this region.
Parameterisation variation

- Separate fits and global fits yield consistent results.
- D-wave is negligible in this region.
Narrow D-wave resonance

- Many other energy levels containing scattering amplitude information.

- Using only irreps with $\tilde{J}=2$ and higher ($E^+, T_2^+, [100]B_{1,2}$) we find a narrow resonance:

- Fit to energies.

- In $\tilde{J} \geq 1$ scattering the lowest threshold is $\pi\pi K$ at $a_t E_{cm}=0.235$.

- Ideally requires 3-body formalism. Although not strictly rigorous, we can apply the $2 \rightarrow 2$ formalism anyway.
S-matrix poles

\[m = \text{Re} \sqrt{s_0} / \text{MeV} \]

\[\Gamma = 2 \cdot \text{Im} \sqrt{s_0} / \text{MeV} \]
S-matrix poles

\[m = \text{Re}\sqrt{s_0} / \text{MeV} \]

\[\Gamma = 2 \cdot \text{Im}\sqrt{s_0} / \text{MeV} \]

\[\chi^2 / N_{\text{dof}} = 0.89 \]

Coupled-channel scattering from lattice QCD
S-matrix poles

$m = \text{Re} \sqrt{s_0} / \text{MeV}$

$\Gamma = 2 \cdot \text{Im} \sqrt{s_0} / \text{MeV}$

Coupled-channel scattering from lattice QCD
S-matrix poles

\[m = \text{Re}\sqrt{s_0} / \text{MeV} \]

\[\Gamma = 2 \cdot \text{Im}\sqrt{s_0} / \text{MeV} \]

\[\delta_2 \]

\[\chi^2/N_{\text{dof}} = 0.89 \]
S-matrix S-wave poles

\[t_{ij}(s \sim s_0) \sim \frac{c_i c_j}{S_0 - s} \]

- **K-matrix pole + const**
- **K-matrix pole + linear**
 - \(K^{-1} \) poly \{1,0,1\}
 - \(K^{-1} \) poly \{2,0,1\}
 - \(K^{-1} \) poly \{1,1,1\}
 - \(K^{-1} \) poly \{1,0,0\}
 - \(K^{-1} \) poly \{2,0,0\}
 - \(K^{-1} \) poly \{2,1,0\}

- **elastic scat. len.**
- **elastic eff. range.**

David Wilson
Coupled-channel scattering from lattice QCD
S-wave amplitudes vs experiment

(a) $|a_s|$ vs $M_{K^-\pi^+}$ (GeV/c2)

(b) Phase ϕ_s vs $M_{K^-\pi^+}$ (GeV/c2)
Summary

- Coupled-channel scattering amplitudes can be obtained from QCD using lattice methods.
- Using extensions of Lüscher’s method, we were able to connect finite volume energy levels to infinite volume scattering amplitudes.
- There are many exciting possibilities for future calculations using similar methods:
 - Strongly coupled systems like the $a_0(980)$ and $f_0(980)$ are under investigation.
 - Investigations into $\pi\gamma \rightarrow \pi\pi$ and similar processes are underway.
 - Channels involving charm quarks are also under investigation by European collaborators.
- Further in the future: $\pi N \rightarrow \pi N, \gamma N \rightarrow \pi N$. Multiparticle scattering, exotics.
Coming soon: $\pi\eta$-$K\bar{K}$-$\pi\eta'$

\begin{align*}
L/\alpha_s &
\begin{array}{cccc}
16 & 18 & 20 & 22 & 24 \\
0.16 & 0.18 & 0.20 & 0.22 & 0.24 & 0.26 & 0.28 & 0.30
\end{array}
\end{align*}
Backup slides: Lattice
P-wave contributions

Coupled-channel scattering from lattice QCD
• Overlaps \sim guide to resonant content
 \[Z^n_i = \langle n | O^\dagger_i | 0 \rangle \]

• Shifted πK-like and ηK-like states

• $\mathcal{J}^P=1^-$ state near to πK threshold, $\mathcal{J}^P=2^+$ state, extra $\mathcal{J}^P=0^+$.

• Considerable partial-wave mixing.

[011] A_1 contains $\mathcal{J}^P=0^+$, 1, 2, ...

$\sim J^P = 2^+$

$\sim J^P = 0^+$

$\sim J^P = 1^-$
P-wave near-threshold state

Elastic scattering just above πK threshold, no ηK to consider.

The irreps with P-wave overlap:

all have an “extra” level near πK threshold.

Fitting the energy levels using an elastic Breit-Wigner in πK:

\[a_t E_{\text{cm}} \]
P-wave near-threshold state

Elastic scattering just above πK threshold, no ηK to consider.

The irreps with P-wave overlap:

all have an “extra” level near πK threshold.

Fitting the energy levels using an elastic Breit-Wigner in πK:

\[
\Gamma(s) = \frac{g_R^2 k_{cm}^3}{6\pi E_{cm}^2}
\]

\[
t = \frac{1}{\rho(s) m_R^2 - s - is^{3/2} \Gamma(s)}
\]

\[
k^3 \cot \delta_1 = (m_R^2 - s) \frac{6\pi s^{1/2}}{g_R^2}
\]

In t there is a pole on the real axis just below πK threshold:

Bound state in $J^P=1^-$.

David Wilson
Coupled-channel scattering from lattice QCD
Coupled-channel calculation details

• Large basis of operators including:

 “Single-meson” like operators, including bilinears and derivatives.

 \[\mathcal{O}_i = \bar{\psi} \Gamma \hat{D} \ldots \hat{D} \psi \]

 “Meson-meson” like operators: Made from pairs of projected variationally-optimised single-meson operators at source and sink with definite momentum, e.g.:

 \[\Omega_\pi(\tilde{p}_1) \Omega_K(\tilde{p}_2) \]

 \[C(t) \nu^n(t) = \lambda_n(t) C(t_0) \nu^n(t) \]

 \[\Omega_n^\dagger = \sum_i \nu_i^n \mathcal{O}_i^\dagger \]

• Include all Wick contractions.

• All relevant irreps with boosts

 \[p^2 = |\tilde{p}_1 + \tilde{p}_2|^2 \leq 4 \left(\frac{2\pi}{L} \right)^2 \]
Relative operator overlaps

\[Z_i = \langle n | O_i | 0 \rangle \]
Excited state spectra from lattice QCD

Operators with overall momentum

Because momentum is quantised, different energies can be accessed by considering operators with an overall momentum.

\[\vec{p} = \frac{2\pi}{\xi L} \vec{n} \]

\[E_{\text{lat}}^2 = E_{\text{cm}}^2 + \left(\frac{2\pi}{\xi L} |\vec{n}| \right)^2 \]

Useful to consider systems with \(\vec{n} = (0,0,0), (1,0,0), (1,1,0), (1,1,1), (2,0,0) \)

Overall zero momentum: \(\pi(0,0,0)\pi(0,0,0), \pi(1,0,0)\pi(-1,0,0), \ldots \)

One unit: \(\pi(1,0,0)\pi(0,0,0), \pi(1,1,0)\pi(-1,0,0), \ldots \)

Less symmetry: More mixing of angular momentum!
Principal correlators

\[\lambda_0 \]
\[\chi^2 / N_{\text{dof}} = 0.76 \]
\[a_t E_{\text{lat}} = 0.16541(66) \]

\[\lambda_3 \]
\[\chi^2 / N_{\text{dof}} = 0.68 \]
\[a_t E_{\text{lat}} = 0.26802(99) \]

\[\lambda_6 \]
\[\chi^2 / N_{\text{dof}} = 0.62 \]
\[a_t E_{\text{lat}} = 0.3373(54) \]

\[\lambda_1 \]
\[\chi^2 / N_{\text{dof}} = 0.38 \]
\[a_t E_{\text{lat}} = 0.17793(66) \]

\[\lambda_4 \]
\[\chi^2 / N_{\text{dof}} = 0.72 \]
\[a_t E_{\text{lat}} = 0.27666(84) \]

\[\lambda_7 \]
\[\chi^2 / N_{\text{dof}} = 1.02 \]
\[a_t E_{\text{lat}} = 0.3400(113) \]

\[\lambda_2 \]
\[\chi^2 / N_{\text{dof}} = 0.58 \]
\[a_t E_{\text{lat}} = 0.23097(68) \]

\[\lambda_5 \]
\[\chi^2 / N_{\text{dof}} = 1.00 \]
\[a_t E_{\text{lat}} = 0.3364(29) \]
The starting point is the path integral:

\[
\langle x_b | e^{-iHT} | x_a \rangle = \int \mathcal{D}x(t) e^{iS[x(t)]}
\]
Path integrals

To solve numerically, consider the discretised version

\[\langle x_b | e^{-iHT} | x_a \rangle = \prod_{x_{t_i}} \int dx_{t_i} e^{iS(x_{t_i})} \]
Path integrals

Evaluate correlation functions from the path integral:

\[
\langle 0 | \mathcal{O}_i(t) \mathcal{O}_j^\dagger(0) | 0 \rangle = \frac{1}{Z_0} \int \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{D} A \ \mathcal{O}_i(t) \mathcal{O}_j^\dagger(0) \ e^{iS[\bar{\psi}, \psi, A]}
\]

In order to deal with strong coupling: Solve the QCD path integral numerically.

Integrate over gauge field configurations: Infinitely many possibilities.

➔ Store field values on a discrete set of points
Lattice QCD

Use a finite spacetime volume, $L^3 \times t$. (L Roughly 2-3fm in these studies).
Use a finite number of points, with separation $a \sim 0.1$fm. ($L/a = 16, 20, 24$)

Quarks live on discrete points and the gluons live on the links between them.

Use periodic boundary conditions: Volume becomes a torus.
Use a finite spacetime volume, $L^3 \times t$. (L Roughly 2-3fm in these studies).
Use a finite number of points, with separation $a \sim 0.1$fm ($L/a = 16, 20, 24$).
Change variables to Euclidean spacetime to simplify integration.

Quarks live on discrete points and the gluons live on the links between them.

Use periodic boundary conditions: Volume becomes a torus.
Correlation functions

Evaluate correlation functions from the path integral:

\[C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \mathcal{O}_j^\dagger(0) | 0 \rangle \]
\[= \frac{1}{Z_0} \int \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{D} A \ \mathcal{O}_i(t) \mathcal{O}_j^\dagger(0) \ e^{-S[\bar{\psi}, \psi, A]} \]

Leads to the ground state energy for large t:

\[C_{ij}(t) = \sum_n \frac{1}{2E_n} \langle 0 | \mathcal{O}_i | n \rangle \langle n | \mathcal{O}_j^\dagger | 0 \rangle \ e^{-E_n t} \]
\[= \frac{Z_i^* Z_j}{2E_n} e^{-E_n t} \]

The symmetries of the operators dictate which states can be extracted

\[\bar{\psi} \Gamma \psi \]
\[\begin{align*}
\Gamma & \quad \gamma_5 \sim \pi \quad J^P = 0^- \\
\gamma_i \sim \rho \quad J^P = 1^-
\end{align*} \]
Extracting a spectrum

Getting the ground state is useful, but we want to extract the whole spectrum in a finite volume.

Fitting subleading exponentials doesn’t get very far:
With very precise data, sometimes a second state can be found.

A solution: The variational method.

\[C_{ij}(t)v^n_j = \lambda_n(t)C_{ij}(t_0)v^n_j \]

If more than one operator overlaps onto the same state represented by some eigenvector \(v^n_i \) the generalised eigenvalue problem can be solved and then as many states as operators may be extracted.

\[\lambda_n(t) \sim e^{-E_n(t-t_0)} \]

... a large basis of operators are needed
Operators and the variational method

\[C_{ij}(t)v_j^n = \lambda_n(t)C_{ij}(t_0)v_j^n \]
\[\lambda_n(t) \sim e^{-E_n(t-t_0)} \]

Use a large basis of operators

\[\Theta_i = \bar{\psi} \Gamma \psi \]
\[\Theta_i = \bar{\psi} \Gamma \mathring{D} \ldots \mathring{D} \psi \]

\[\Gamma_i = \{1, \gamma_0, \gamma_5, \gamma_0\gamma_5, \gamma_i, \gamma_0\gamma_i, \gamma_5\gamma_i, [\gamma_i, \gamma_j] \} \]

Use the variational method with a large correlation matrix
Symmetry on the lattice

The lattice has a cubic symmetry.
It does not have the O(3) symmetry of continuous space.

Eg: 2D QM

Continuous rotational spatial symmetry

$$e^{i\phi} \rightarrow e^{i\phi + i \alpha}$$

$$e^{i\phi} \rightarrow e^{i\phi + in\pi/2}$$

Only symmetric at discrete angles
Symmetry on the lattice

Continuous rotational spatial symmetry

\[e^{i\phi} \rightarrow e^{i\phi + i\alpha} \quad \text{vs} \quad e^{i\phi} \rightarrow e^{i\phi + in\pi/2} \]

Only symmetric at discrete angles

Cubic symmetry groups mix the continuum angular momentum:

<table>
<thead>
<tr>
<th>Irrep</th>
<th>(J^p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1^+)</td>
<td>0(^+), 4(^+), ...</td>
</tr>
<tr>
<td>(T_1^-)</td>
<td>1(^-), 3(^-), ...</td>
</tr>
</tbody>
</table>
Backup slides: Finite volume formalism
Two particles in a finite volume

Simple 1-d problem

No interactions \rightarrow total energy is just the sum

\[E = \left(p_1^2 + m_1^2 \right)^{\frac{1}{2}} + \left(p_2^2 + m_2^2 \right)^{\frac{1}{2}} \]

For a single particle:

\[p_i^2 = \left(\frac{2\pi n}{L} \right)^2 \]

Non-interacting energies in a finite volume are known from the single-particle analysis

If we measure the energies on the lattice and find a difference, this shift must be due to interactions.

Lüscher et al
Two particles in a finite volume

In simple QM: Interactions lead to phase shift δ on the wavefunction $\psi(x) \sim e^{\pm ipx}$

Periodic boundary conditions for interacting particles.

$\psi(0) = \psi(L), \quad \frac{\partial \psi}{\partial x} \bigg|_{x=0} = \frac{\partial \psi}{\partial x} \bigg|_{x=L}$

$\sin \left(\frac{pL}{2} + \delta(p) \right) = 0$

$p = \frac{2\pi n}{L} - 2 \frac{L}{L} \delta(p)$

Discrete spectrum of allowed energies directly connected to the phase shift.

If we measure the energies on the lattice and find a difference, this shift must be due to interactions.
Two particles in a finite volume

In 3+1 dimensions, this leads to a simple relation between the finite volume energy and the S-wave scattering length:

\[k \cot \delta = \frac{1}{a} + \frac{1}{2} r k^2 + O(k^4) \]

\[= \frac{1}{\pi L} \sum_{\vec{n} \in \mathbb{Z}_3} \frac{1}{\left(|\vec{n}|^2 - \left(|\vec{k}|L/(2\pi) \right)^2 \right)^2} \]
Finite volume spectra

Weak interactions

Small, +ve scattering length (weakly attractive)
Weakly repulsive scattering from QCD

\(\pi K \rightarrow \pi K, \ I = 3/2 \)
Resonances

Narrow resonance:
- Pole in t, close to real axis.

\[t \sim \frac{1}{\rho(s)} \frac{s^{\frac{1}{2}} \Gamma(s)}{m_R^2 - s - is^{\frac{1}{2}} \Gamma(s)} \]

Broad resonance:
- Pole in t, far from real axis

\[\Gamma(s) = \frac{g_R^2}{6\pi} \frac{k_{cm}}{s} \]
Finite volume spectra with a resonance

Weak interactions

Coupled-channel scattering from lattice QCD
Finite volume spectra with a resonance

Narrow resonance
Finite volume spectra with a resonance

Narrow resonance
Finite volume spectra with a resonance

Weak interactions

Coupled-channel scattering from lattice QCD
Finite volume spectra with a resonance

- Broad resonance

Coupled-channel scattering from lattice QCD
Finite volume spectra with a resonance

Extra level due to the resonance ~ within the resonance width.
To understand the state better we can study it in several volumes and apply Lüscher’s method and extensions.
Finite volume spectra with a resonance

Broad resonance

using $L/a = 16^3, 20^3, 24^3$
Finite volume spectra with a resonance

Many energy levels can map out the scattering amplitude
Coupled-channel extensions of Lüscher’s method

\[
S_{ij} = \delta_{ij} + 2i \left(\rho_i \rho_j \right)^{\frac{1}{2}} t_{ij}
\]

\[
\det \left[\delta_{ij} \delta_{\ell\ell'} \delta_{nn'} + i \rho_i t_{ij} \right] \left(\delta_{\ell\ell'} \delta_{nn'} + \hat{M}_{ij, \ell n, \ell' n'} \right) = 0
\]

Channels: eg \(\pi K, \eta K \)

Angular momentum

scattering t-matrix

momentum boost vector

lattice irrep

finite volume object - contains generalised Lüscher Zeta functions

\[
M \sim \frac{1}{\gamma} \sum_{\text{spins}} (\text{CGs}) \sum_{\hat{\mathbf{r}}} \frac{r^\ell Y_{\ell m}(\hat{\mathbf{r}})}{r^2 - q^2}
\]

Symmetry of the volume mixes partial waves - \(M \) mixes partial waves.

\(t \)-matrix is diagonal in partial waves, but can couple scattering channels: \(\pi K \to \eta K \)
Coupled-channel scattering

\[\mathcal{M} \sim \frac{1}{\gamma} \sum_{\text{spins}} (\text{CGs}) \sum_{\mathbf{r}} \frac{r^{\ell} Y_{\ell m} (\mathbf{r})}{r^2 - q^2} \]

scattering t-matrix, couples channels, diagonal in \(l \).

\[
\det \left[\delta_{ij} \delta_{\ell \ell'} \delta_{nn'} + i \rho_i t_{ij}^{(\ell)} \left(\delta_{\ell \ell'} \delta_{nn'} + i \mathcal{M}_{ij, \ell n, \ell' n'} \right) \right] = 0
\]

finite volume object - contains generalised Lüscher Zeta functions mixes partial waves

- Several unknowns at each energy level: Multiple channels, multiple partial waves.
- Problem is unconstrained for a single energy level.
- Solution: Parameterise \(t_{ij} \) using a few free parameters, use many energy levels to constrain them.
Example Minimisation

\[\delta_0^{\pi K}, \delta_0^{\eta K}, \eta, \chi^2 \]

\[L/\alpha_s \]

\[m, g_{\pi K}, \gamma_{\eta K, \eta K} \]

credit: Jo Dudek
Backup slides: Amplitudes
P-wave pole

- Breit-Wigner pole from continuation below threshold.
- Also used a K-matrix below threshold, found almost exactly the same result.
- Poles on physical sheet $\text{Im}(k_{\text{cm}}) > 0$.
S-wave poles

Multi-sheeted complex plane due to square-root branch cuts at each threshold, in single channel case for now:

\[k_{cm} = \pm \frac{1}{2} \left(E_{cm}^2 - 4m^2 \right)^{\frac{1}{2}} \]

Bound state

Resonance

Virtual Bound state
S-wave poles

Multi-sheeted complex plane due to square-root branch cuts at each threshold, in single channel case for now:

$$k_{cm} = \pm \frac{1}{2} \left(E_{cm}^2 - 4m^2 \right)^{\frac{1}{2}}$$

Bound state

Resonance

Virtual Bound state
Poles

Multi-sheeted complex plane due to square-root branch cuts at each threshold, in single channel case for now:

\[k_{cm} = \pm \frac{1}{2} \left(E_{cm}^2 - 4m^2 \right)^{\frac{1}{2}} \]

Bound state
Poles

Multi-sheeted complex plane due to square-root branch cuts at each threshold, in single channel case for now:

\[k_{cm} = \pm \frac{1}{2} (E_{cm}^2 - 4m^2)^{\frac{1}{2}} \]

Bound state

Resonance
Poles

Multi-sheeted complex plane due to square-root branch cuts at each threshold, in single channel case for now:

\[k_{\text{cm}} = \pm \frac{1}{2} \left(E_{\text{cm}}^2 - 4m^2 \right)^{\frac{1}{2}} \]
S-wave poles

Actual situation: Unequal masses and an extra pair of sheets due to ηK scattering

\[\kappa_{cm} = \pm \frac{1}{2} \left(E_{cm}^2 - 2 \left(m_1^2 + m_2^2 \right) + \left(\frac{m_1^2 - m_2^2}{E_{cm}} \right)^2 \right)^{\frac{1}{2}} \]
Virtual bound state κ

Pelaez and Nebreda using Unitarised SU(3) Chiral Perturbation theory
More on virtual bound state

In an effective range parameterisation, strong interactions near threshold lead to a large a.

In S-wave large a automatically leads to a pole near-threshold.

\[k_{\text{cm}} \cot \delta_0 = \frac{1}{a} + \frac{1}{2} r k_{\text{cm}}^2 \]

\[t = \frac{1}{2} \frac{E_{\text{cm}}}{k_{\text{cm}} - \frac{i}{a}} \quad k_{\text{cm}} = \mp \frac{i}{a} \]

Arguments appear to hold for constant terms in K-matrix (slightly complicated by Chew-Mandelstam).

Appears to break down for P-wave and higher.

![Graph showing $|k_{\text{cm}}|$ vs δ_0 and a, E_{cm} vs δ_0](image)
More \(K \)-matrix details

- \(K \)-matrix contains everything not constrained by unitarity

\[
t_{ij}^{-1}(s) = K^{-1}_{ij}(s) - i\delta_{ij}\rho_i(s)
\]

\[
K = \frac{1}{m^2 - s} \left[\begin{array}{cc} g_{\pi\pi}^2 & g_{\pi\eta} \, g_{\eta\eta} \\ g_{\pi\eta} \, g_{\eta\eta} & g_{\eta\eta}^2 \end{array} \right] + \left[\begin{array}{cc} \gamma_{\pi\pi,\pi\pi} & \gamma_{\pi\pi,\eta\eta} \\ \gamma_{\pi\eta,\pi\pi} & \gamma_{\eta\eta,\eta\eta} \end{array} \right]
\]

- Chew-Mandelstam phase space -- include also \(s \)-channel cut along with imaginary part.

\[
t_{ij}^{-1}(s) = K^{-1}_{ij}(s) + \delta_{ij} \, I_i(s)
\]

\[
I_i(s) = I_i(s_{thr}) - \frac{s - s_{thr}}{\pi} \int_{s_{thr}}^{\infty} ds' \frac{\rho_i(s')}{(s' - s)(s' - s_{thr})}
\]

(Substring at pole so that \(\text{Re} \, I(s = m^2) = 0 \))

- Threshold factors for \(l>0 \)

\[
t_{ij}^{-1}(s) = \frac{1}{(2k_i)^{\ell}} \, K^{-1}_{ij}(s) \frac{1}{(2k_j)^{\ell}} + \delta_{ij} \, I_i(s)
\]

As used in Guo, Mitchell and Szczepaniak Phys.Rev. D82 (2010) 094002

No modifications were used in \(I(s) \) for higher waves.

Also tested phase space factors instead of \(k_i \) for thresholds.
Virtual bound state κ

Pelaez and Nebreda using Unitarised SU(3) Chiral Perturbation theory
Backup slides: ρ resonance
Extracting the ρ resonance

Several volumes: $L=16$, 20, 24.
Operators in several moving frames, upto $n=(2,0,0)$.

Anisotropic lattices:
temporal spacing 3.5 times finer for better energy resolution.

Combination of single particle and meson-meson operators.

$m_\pi=391$ MeV
Finite volume spectra in I=1 J=1

$\vec{p} = [000] T_1$

$\vec{p} = [011] A_1$

$\vec{p} = [111] A_1$

$\vec{p} = [001] A_1$

$\vec{p} = [011] B_1$

$\vec{p} = [111] E_2$

$\vec{p} = [001] E_2$

$\vec{p} = [011] B_2$

$\vec{p} = [002] A_1$
A resonance from QCD

\[\Gamma(s) = \frac{g_R^2}{6\pi} \frac{k_{cm}^3}{E_{cm}^2} \]

\[\pi \rightarrow \pi \rightarrow 1 \longrightarrow \pi \longrightarrow (s) \]

\[m_R = 854.1 \pm 1.1 \text{ MeV} \]
\[g = 5.80 \pm 0.11 \]

\[\Gamma_R = \frac{g^2}{6\pi} \frac{p_R^2}{m_R^2} = 12.4 \pm 0.6 \text{ MeV} \]

- \(L = 1.9 \text{ fm} \)
- \(L = 2.4 \text{ fm} \)
- \(L = 2.9 \text{ fm} \)

\(m_\pi = 391 \text{ MeV} \)
Strong coupling

Lagrangian of QCD

\[\mathcal{L}_{\text{QCD}} = \sum_q \bar{\psi}_q (i\mathcal{D} - m_q) \psi_q - \frac{1}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} \]

\[\mathcal{D} = \gamma^\mu (\partial_\mu - igA_\mu) \]

\[\mathcal{F}_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + g [A_\mu, A_\nu] \]

Coloured quark and gluon degrees of freedom.

- Excited state spectrum contains many interesting open questions.
- Interesting effects near thresholds: tetraquarks? meson-meson bound states? \(f_0(980) \) in \(\pi\pi \) scattering and new charmonium states, eg: \(Z(4430) \).
- Hybrid states, containing explicit gluonic degrees of freedom. Could be seen in new experiments, like GlueX.
Strong coupling

Lagrangian of QCD

$$\mathcal{L}_{\text{QCD}} = \sum_q \bar{\psi}_q \left(i\slashed{D} - m_q \right) \psi_q - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

$$\slashed{D} = \gamma^\mu \left(\partial_\mu - ig A_\mu \right)$$

$$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + g [A_\mu, A_\nu]$$

Many interesting consequences:
Confinement - no asymptotic quarks or gluons.
Dynamical chiral symmetry breaking.
Light physical pion ~ goldstone boson of the symmetry breaking.
Cannot use perturbation theory: Non-perturbative methods needed.

Several options including: Models
Schwinger-Dyson+Bethe-Salpeter
Effective Field Theories
Lattice QCD
Coupled channel scattering

Calculation details:

Use lattice QCD to obtain finite volume energy levels and use the Lüscher method and its extensions to connect to infinite volume physics.

\[m_\pi = 391 \text{ MeV}. \]

Three different lattices:
16\(^3\), 20\(^3\), 24\(^3\) spatial lattice sites.
Corresponds to boxes with sides 1.9, 2.4, 2.9 fm.

Several boosts in each volume - gives more energy levels (in finite volume). \[\vec{p}_i^2 = \left(\frac{2\pi n}{L} \right)^2 \]

Use the cubic group irreducible representations to extract partial wave information.