Baryon spectroscopy with $(\pi,2\pi)$ reactions at J-PARC E45

Hiroyuki Sako
ASRC/J-PARC, JAEA
for J-PARC E45 Collaboration
PWA8/ATHOS3, 13 Apr 2015, GWU

1. Physics motivation
2. J-PARC E45
3. Detector status
5. Summary
Studies of baryon resonances in (π,2π) reactions for

- Precise measurements of baryon resonance properties
 - Many resonances have not been established experimentally
 - $\pi\pi N$ has strong coupling to high mass resonances
 - Not enough (π,2π) experimental data since 1970’s
- Deeper understanding of non-perturbative QCD
- Search for new baryon states
 - e.g. hybrid baryons (qqqqg)
Baryon mass: Exp vs QM (PDG)

Orders of mass levels are different

Missing baryons
Quark model does not describe well N^* mass levels.

Most of the N^*s so far were measured from

$$\pi N \rightarrow \pi N \ , \ \gamma N \rightarrow \pi N$$

PDG 2014
Partial wave (LSJ) amplitude of a b reaction:

Reaction channels:

Transition potentials: coupled-channels effect

Dynamical coupled-channels model (ANL-Osaka)

Kamano’s talk (Apr 14)

Physical N^*s will be a “mixture” of the two pictures:

Physical N^*s will be a “mixture” of the two pictures:

$$|N^*\rangle = |MB\rangle$$

$$|N^*\rangle = |qqq\rangle + |m.c.\rangle$$

Transition potentials:

$$V_{a,b} = V_{a,b} + \sum_{N^*} \frac{\Gamma^+_{N^*,a} \Gamma_{N^*,b}}{E - M_{N^*}}$$

exchange potentials of ground state mesons and baryons

bare N^* states)
Importance of $N\pi\pi$ Decay

World’s $\pi N \rightarrow \pi \pi N$ data

Only 240K bubble chamber data in 1970’s

\[\pi^+ p \rightarrow \pi^+ \pi^0 n \]

\[\pi^- p \rightarrow \pi^+ \pi^- n \]

\[\pi^- p \rightarrow \pi^- \pi^0 p \]

\[\pi^+ p \rightarrow \pi^+ \pi^0 p \]

\[\pi^- p \rightarrow \pi^- \pi^0 n \]

\[\pi\pi N \text{ center of mass energy} \]

H. Kamano et al.,
Recent Lattice QCD calculations

J. Dudek et al., PRD85 (2012) 054016

Hybrid baryons (qqgqg)

\[m_\pi = 396 \text{ MeV} \]
Bird's eye photo in January of 2008

Neutrino Beams

T2K experiment

Hadron Exp. Facility

Materials and Life Experimental Facility

3 GeV Synchrotron

400 MeV LINAC

J-PARC (MW proton synchrotron)

Neutrino Beams

(T2K experiment)

MR Synchrotron (30 GeV)

Hadron Exp. Facility
Hadron Experimental Facility

Hypernuclei

Strange
ness

ΛΛ, Ξ Hypernuclei

Λ, Σ Hypernuclei

Hypernuclei

K meson

Implantation of Kaon and the nuclear shrinkage

Why are bound quarks heavier?

Quark

Free quarks

Bound quarks

Vector meson in nucleus

Kaonic nucleus

J-PARC HI WS, K. Ozawa

10^{14}/cycle p beams
10^{8}/cycle π beams
10^{6}/cycle K beams

(2017) cycle ~ 6s
Measure ($\pi,2\pi$) in large acceptance TPC in dipole magnetic field

$\pi p \rightarrow \pi^+ \pi^0 n$, $\pi^0 \pi p$

$\pi^+ p \rightarrow \pi^0 \pi^+ p$, $\pi^+ \pi^+ n$

$\pi N \rightarrow K Y$ (2-body reaction)

$\pi p \rightarrow K^0 \Lambda$,

$\pi^+ p \rightarrow K^+ \Sigma^+ (I=3/2, \Delta^*)$

π^+ beam on liquid-H target
(p= 0.73 – 2.0 GeV/c
W=1.5-2.15 GeV)

2 charged particles + 1 neutral particle
→ missing mass technique

LH target

Superconducting Helmholtz Dipole magnet

Hyp-TPC

Trigger with hodoscope

π beam
HypTPC

Large acceptance H-target inside TPC

High-rate capable TPC
- Gating Grid
- GEM (Gas Electron Multiplier)
 - Suppression of positive-ion backflow causing position distortions

Good position resolution with magnetic field and fine-segmented pads
- $\pi/K/p$ separation
- dE/dx vs p

Gating grid wires
- GEM (e amplification)
- Pad plane

Field cage (sensitive volume)
- P-10 gas

Target holder
- Liquid H target

Beam
- π^-

Electron drift
- Ionization

Gas vessel
- $E=180V/cm$
- $B=1.5T$

Dimensions
- 70ϕ
- 500ϕ
- 550\sim

π beam

e^-

π^+
GEM (Gas Electron Multiplier)

- 4 GEM (250mmx250mm) sheets
- 3-GEM layers
- 50μm + 50μm +100μm thick
- Gain ~ 10^4

Segmented electrodes

- to reduce spark rate / electrode
- to minimize acceptance loss when an electrode is broken due to discharge
Readout pad configuration

Pad size
2.4 x 9 mm² (inner layer)
2.4 x 13 mm² (outer layer)
32 pad rows (rings)
No. of pads = 5768

Position resolution <300μm
(L>10cm)

Δp/p=1-3% (π,p)
Detector simulation (GEANT)

Elastic scattering
(Same trigger condition)

3-body reaction

Cut on coplanarity cut.
Only 3-body reaction can be survived.

Rejected events by coplanarity cut

\[\pi^- p \rightarrow \pi^- \pi^0 p \] reaction

MM\(^2\)(\(\pi^\pm p\))

Coplanarity = cosine of angle between \(p_1\) and \((p_2 \times p_3)\)
Particle identification

\[\pi^- + p + K^+ + p^- + K^- + p \]

\[\pi^- / K : p \leq 0.5 \text{ GeV/c} \]

\[\pi^- / p : p \leq 1.1 \text{ GeV/c} \]

w/ Hodoscope TOF

\[\sigma_T = 100 \text{ps} \]
Trigger efficiency

2-charged particle trigger (inefficiency due to double hit)

Proposed hodoscope with 32 segments.

\[p(\pi^+, \pi_p^0) \]
\[p(\pi^+, \pi_+^0)n \]
Acceptance

\[\pi^+ p \rightarrow \pi^+ \pi^0 p \text{ reaction} \]

\[\text{Beam momentum: } 0.835 \text{ GeV/c} \]
\[\text{1.235 GeV/c} \]
\[\text{2.0 GeV/c} \]

\[\text{Acceptance vs. } \cos(\theta_{\text{C.M. proton}}) \]

\[\text{Acceptance vs. } \pi\text{-beam momentum (GeV/c)} \]

\[\pi p \rightarrow \pi^+ \pi^- \]
\[\pi p \rightarrow \pi^0 \pi^0 \]
\[\pi^+ p \rightarrow \pi^+ \pi^- n \]
\[\pi^+ p \rightarrow \pi^0 \pi^0 n \]
\[\pi^- p \rightarrow \pi^+ \pi^0 p \]
Data statistics

- \((\pi,2\pi)\) cross section: \(~2\) mb
- \(\pi\) Beam rate: \(~10^6\) / cycle (6s)
- Liquid H target: 5cm length
- TPC acceptance: 40%

\(\Rightarrow 160\) events / cycle

Dominant background: elastic scattering
\((\sigma_{\text{total}} = 40\) mb \(\rightarrow\) trigger rate = 3200 events / cycle \(\sim 800\) Hz in maximum (4s flat top))

- Energy range: 1.50 – 2.15 GeV
- No. of bins:
 - \(\pi^-\) beam: 24 (energy) \(\times\) 20 (angle)
 - \(\pi^+\) beam: 23 (energy) \(\times\) 20 (angle)

- No. of events / bin: 32 K

\(\Rightarrow 30M\) events in 15 days

Increase world’s \(\pi\piN\) data (240K) by factor of 130
TPC prototype test
NIMA763(2014)65-81

- Beam test at RCNP
 - Proton beam at 400 MeV
 - Beam rate up to 10^6 Hz/cm2

Hit position distortion <0.1mm

Ion backflow ~ 5% (bench test)

Position resolution (B=0)

\[\sigma_x = 0.40 \text{mm} \text{ (4mm pad)} \]
HypTPC test

GET (General Electronics for TPC) readout system

r-CoBo (data collector)

Mar 2015
HypTPC test with ^{55}Fe (x-ray) source

Gain: 120fC, Shap T: 70ns, GEM Curr.: 315 μA

$\Delta E/E : 14.3 \pm 0.2 \%$

(Peak)/(Esp. Peak): 0.52 ± 0.01

Diffusion size: 1.87 ± 0.02 mm

cf. prototype TPC (5 cm to 10 cm): 1.7 ~ 2.0 mm

The TPC operation is consistent with the prototype TPC!!
Physics possibilities with HypTPC

• H-dibaryon (E42) : \(K^-C \rightarrow K^+H \ X, \ H \rightarrow \Lambda \Lambda, \Lambda \pi^-p \)

• \(\Lambda(1405) \) : \(\pi^-p \rightarrow K^0\Lambda(1405) \)
 \(\Lambda(1405) \rightarrow \Lambda\gamma \) (KN compositeness, T. Sekihara, PRC89 (2014) 025202)

• \(K^-pp \) : \(\pi^+d \rightarrow K^+K^-pp \)
 \(K^-pp \rightarrow \Lambda p, \Sigma^0p, \Lambda\pi^0p, \Sigma^0\pi^0p \)

• \(\Xi \) excited states:
 \(K^-p \rightarrow K^+\Xi^-*, \ \Xi^-* \rightarrow \Lambda K^-, \Sigma^0K^-, \Sigma^-K^0, \Xi^-\pi^0, \Xi^0\pi^-, \Xi^-\gamma \)
 \(K^-p \rightarrow K^0\Xi^0*, \ \Xi^0* \rightarrow \Lambda K^0, \Sigma^0K^0, \Sigma^+K^-, \Xi^-\pi^+ \)
Summary

• J-PARC-E45 is proposed to study baryon excited states in \((\pi, 2\pi)\) reactions, which will improve previous data statistics by two orders of magnitude.

• Large acceptance TPC in high rate operation will realize the experiment.

• E45 spectrometer will be ready for beams in 2016 with the TPC and the magnet.

• PWA with dynamical coupled channels model in collaboration with theorists (H. Kamano, T. Sato,..)
E45 collaboration list

K. H. Hicks, S. Chandavar, J. Goetz, W. Tang
J.K. Ahn
H. Fujioka, S. Nakamura, M. Niiyama
K. Ozawa
B. Bassalleck, Y. Han
K. Joo, N. Markov, N. Harrison, T. O’Connell, E. Seder
B. Briscoe, F. Klein, I. Strakovsky, R. Workman
R. Schumacher
D. M. Manley
L. Guo
P. Cole, A. Forest, D. McNulty
T.S.-H. Lee
T. Sato, H. Kamano
Y. Azimov
V. Shklyar
A. Svarc
S. Ceci
M. Hadzimehmedovic, H. Osmanovic

(Ohio University, USA)
(Japan Atomic Energy Agency, Japan)
(Pusan National University, Korea)
(Korea University, Korea)
(Kyoto University, Japan)
(KEK, Japan)
(University of New Mexico, USA)
(University of Connecticut, USA)
(George Washington University, USA)
(Carnegie Melon University, USA)
(Kent State University, USA)
(Florida International University, USA)
(Idaho State University, USA)
(Argonne National Lab, USA)
(Osaka University, Japan)
(Petersburg Nuclear Physics Institute, Russia)
(University of Giessen, Germany)
(Ruder Boskovic Institute, Hungary)
(RBI-Zagreb, Hungary)
(University of Tulza, Bosnia/Herzegovina)

46 people form USA, Japan, Korea, and Europe