Diagnostics for Laser Driven Sources
CUOS High-Field Science Group

3 Teaching Faculty
Karl Krushelnick
Alec Thomas
Louise Willingale

3 Research Faculty
Tolya Maksimchuk
John Nees
Victor Yanovsky

Recently graduated
Paul Cummings
Franklin Dollar
Chris McGuffey
Will Schumacher
Calvin Zulick

9 PhD Students / Postdocs
Thomas Batson
Keegan Behm
Jungmoo Hah
Zhaohan He
Archis Joglekar
Andrew McKelvey
Anthony Raymond
Tony Zhao

Vladimir Chvykov
ELI-HU
Bixue Hou
k-Space-Ann Arbor

Recent Collaborators:
LOA, UCLA/IST, Queens U. Belfast,
Imperial College London, LLE, NRL, RAL,
Ohio State, UCSD, AFRL, LLNL, LANL
Advantages of Laser Wakefield Accelerators

• Compact (Table Top) Size
 • High-acceleration gradient (up to 100 GeV/m)
 • \(\sim \)GeV electrons from cm-scale plasma
 • Small source size (down to \(\sim \)1 \(\mu \)m)

• Optically Synchronized
 • Easily allows for \(\sim \) fs accuracy
 • Jitter limited to mechanical stability of optics (no electronic jitter)

• Inherently Short Pulse
 • Driver is an ultrashort laser pulse (typically 100 fs or less, as \(c\tau_L < \omega_{pe} \))
 • Acceleration structure ("Plasma Bubble") can further reduce duration/emittance
 • Can achieve sub-fs duration using controlled injection [2]!

CUOS laser systems

Hercules
10J, 30fs, 800nm
2 × 10^{22} \text{ Wcm}^{-2}

4 channels of Nd:glass pump laser

T-cubed
10J, 400fs, 1.053\mu m
5 × 10^{19} \text{ Wcm}^{-2}

\lambda^3 (500Hz)
12mJ, 30fs, 800nm
5 × 10^{18} \text{ Wcm}^{-2}

Omega EP
<1000J, 1-10ps, 1.053\mu m
1 × 10^{19} \text{ Wcm}^{-2}

Titan
<300J, 1-10ps,
1.053\mu m
5 × 10^{19} \text{ Wcm}^{-2}

Gemini
2x15J, 30 fs, 800nm
\sim 10^{21} \text{ Wcm}^{-2}
Ion Measurements
Radiation Pressure Acceleration

High Intensity Laser

Target

Accelerated Ions

Experimental Setup for RPA

From Compressor

Plasma Mirror Chamber

To Beam Quality Diagnostics
X-ray diode

F/1 OAP

QWP

Experimental Chamber

Scint.&PMT

ES

DM

TP
Proton Acceleration From Thin Foils

Thickness Trends

Proton max energies converge for thin targets

![Graph showing thickness trends with max proton energy vs. thickness, comparing linear and circular trajectories.](image)
Neutron Measurements
Pitcher-catcher configuration

- Bulk and pitcher/catcher geometries used.
- Nuclear reactions selected based on target and catcher material.
- Deuterated surface contaminant layer was introduced with deuterated ice layers.

<table>
<thead>
<tr>
<th>Nuclear Reaction</th>
<th>Target</th>
<th>Catcher</th>
<th>Q Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{2}{1} d + \frac{2}{1} d \rightarrow \frac{3}{2} He + \frac{1}{0} n$</td>
<td>1.5(±0.5) mm CD</td>
<td>None</td>
<td>3.27 MeV</td>
</tr>
<tr>
<td>$\frac{1}{1} p + \frac{7}{3} Li \rightarrow \frac{7}{4} Be + \frac{1}{0} n$</td>
<td>100 nm (C$_2$H$_4$)$_n$</td>
<td>LiF</td>
<td>−1.64 MeV</td>
</tr>
<tr>
<td>$\frac{2}{1} d + \frac{7}{3} Li \rightarrow \frac{8}{4} Be + \frac{1}{0} n$</td>
<td>3 μm Mylar with (C$_8$D$_8$)$_n$ Paint</td>
<td>LiF</td>
<td>15.03 MeV</td>
</tr>
<tr>
<td>$\frac{2}{1} d + \frac{7}{3} Li \rightarrow \frac{8}{4} Be + \frac{1}{0} n$</td>
<td>800 nm Al with D$_2$O Ice</td>
<td>LiF</td>
<td>15.03 MeV</td>
</tr>
</tbody>
</table>
D-Li (Ice)
800 nm Al with frozen D$_2$O

- Cooling the target (-150°C) with liquid nitrogen and spraying heavy water into the chamber forms a layer of D$_2$O on the target surface.

- The lack of carbon and the absence of oxygen species above O$^{6+}$ leads to a pure deuteron signal on the Q/M = ½ TP parabola.
D-Li (Paint)

3 \(\mu \)m Mylar painted with Deuterated polystyrene paint

- Thompson Parabola overlaps \(\text{C}^6^+ \) and \(\text{D}^+ \) because they have the same \(\text{Q/M} \).
- CR-39 shows the presence of two distinct species in the trace.
Bubble Detector

- Sensitive to neutrons between 200 keV and 15 MeV
- 1 bubble per 10^3 neutrons/cm2
- Small and portable design allows them to be placed anywhere outside of the chamber allowing flux measurements in different directions.

Neutron Diagnostic Setup

BD-PND neutron bubble detectors

F/1 OAP

1. 275 cm
2. 330 cm
3. 950 cm

TOF

Neutron Signal

Catcher In

Catcher Out

Photon Flash

nToF Signal Voltage (V)

Time (ns)
Deuteron Acceleration

- The D-Li (Ice) technique improves both the energy and number of accelerated neutrons with a 1 \((\pm 0.5)x 10^{-5}\) conversion efficiency.

- It is important to note that this is the MCNP Q/M = \(\frac{1}{2}\) signal, so the D-Li (Paint) signal contains some carbon contaminants.

- The Simulation D-Li (Ice) trace was calculated using a PIC code which modeled the target scale length as \(\rho = A \times e^{-z/L_s}\).

- The simulated spectra was used for neutron simulations which are discussed later.
Deuteron Optimization

- Quantified the purity of the beam using the number and energy ratio of deuterons to protons above 0.5 MeV.
- The purity increased with shorter time delays.
- Redeposition of hydrogenous contaminants and sublimation reduce the purity for longer delays.
- D$_2$O was 99.8% pure yielding a theoretical maximum number ratio of 500.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Volume</th>
<th>Timing</th>
<th>Peak Number Ratio</th>
<th>Peak Energy Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>120° – 180° K</td>
<td>100 (±50) μl</td>
<td>350 ms</td>
<td>250 (±100)</td>
<td>620 (±250)</td>
</tr>
</tbody>
</table>
Neutron Generation

- Highest energy neutrons (16.8 MeV) were generated with the deuterated ice targets.
- The highest flux (2.3 X 10^7 n/sr) was seen with p-Li.
- The bulk d-d reaction showed little energy upshift which was consistent with low energy ions from bulk targets on HERCULES.
- p-Li spectrum showed the same exponential shape as the proton spectra, but not the d-Li.

<table>
<thead>
<tr>
<th>Nuclear Reaction</th>
<th>Target</th>
<th>Highest Measured Flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{2}\text{D} + \frac{1}{2} \text{D} \rightarrow \frac{3}{2} \text{He} + \frac{1}{0} \text{n})</td>
<td>1.5(±0.5) mm CD</td>
<td>8.0 (±4.6)×10^5 n/sr</td>
</tr>
<tr>
<td>(\frac{1}{2}\text{p} + \frac{7}{3} \text{Li} \rightarrow \frac{4}{4} \text{Be} + \frac{1}{0} \text{n})</td>
<td>100 nm (C(_2)H(_4))(_n)</td>
<td>2.3 (±1.1)×10^7 n/sr</td>
</tr>
<tr>
<td>(^{2}\text{D} + \frac{7}{3} \text{Li} \rightarrow \frac{8}{4} \text{Be} + \frac{1}{0} \text{n})</td>
<td>3 μm Mylar with (C(_8)D(_8))(_n) Paint</td>
<td>1.3 (±0.6)×10^6 n/sr</td>
</tr>
<tr>
<td>(\frac{1}{2}\text{p} + \frac{7}{3} \text{Li} \rightarrow \frac{4}{4} \text{Be} + \frac{1}{0} \text{n})</td>
<td>800 nm Al with D(_2)O Ice</td>
<td>1.2 (±0.6)×10^6 n/sr</td>
</tr>
</tbody>
</table>

Flux was 6 times higher in the forward direction.
Neutron Generation

- Highest energy neutrons, 16.8 (±0.3) MeV, were generated with the D-Li (Ice) technique.
- A higher flux of 3×10^6 was also seen with D-Li (Ice).
- The D-Li (Paint) spectra shows a dual peak spectra with bumps at 5 MeV and 12 MeV, while the D-Li (Ice) spectra is exponential.
- Monte Carlo simulations predict dual dump spectra.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Target and Catcher</th>
<th>Max Flux (n/sr)</th>
<th>Max E_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Li (Paint)</td>
<td>$3 \mu m$ Mylar with $(C_8D_8)_n$ Paint + LiF</td>
<td>$4.6 (\pm 2.2) \times 10^5$</td>
<td>12.6 ± 0.3 MeV</td>
</tr>
<tr>
<td>D-Li (Ice)</td>
<td>800 nm Al with D_2O Ice + LiF</td>
<td>$3 (\pm 1.4) \times 10^6$</td>
<td>16.8 ± 0.3 MeV</td>
</tr>
</tbody>
</table>
$\frac{1}{2}$ KHz Neutron Generation
Electron beam experiments
High repetition rate LWFA enables real-time control and optimization

Lambda-cubed
0.8 TW
35 fs
500 Hz

Continuous flow
High repetition rate: real-time beam optimization
(Coherent control of plasma dynamics)
High repetition rate: real-time beam optimization

- Adaptive optics system: optimize the deformable mirror using a genetic algorithm directly for the electron beam.

- Heuristic search for best mirror figure for optimal electron production.

Highest laser intensity ≠ best electron beams !!
Gas Cell targets: Made on 3D Printer

- Printed on 3D printer!
- Need high-resolution (Viper SLA)

Mounted 20mm Gas Cell

After 450 Shots Laser Damage/Ablated Solid Target

10mm Gas Cell

Variable length two stage gas cell

CFD modeling of gas flow (COMSOL)
Collimated, High-Energy Positron Measurements

Scaling with Z and d consistent with a two-step process (Bremsstrahlung + Bethe-Heitler)

- Overall positron yield: 3×10^7 e$^+$
- Overall lepton yield: 3×10^8 (secondary e$^-$/e$^+$)
- Positron density: 2×10^{14} cm$^{-3}$
- Lepton density: 2×10^{15} cm$^{-3}$
- Divergence: 3 mrad

G. Sarri et al. PRL 110 255002 (2013)
Neutral Electron-Positron Beams

- Max Positron density: 10^{16} cm$^{-3}$
 - comparable to the highest density of stable antimatter obtainable nowadays in the laboratory
 - directly comparable to predictions for astrophysical jets

- Neutral e^+e^- plasma with $n = 3 \times 10^{15}$ cm$^{-3}$
Ultra-high brilliance multi-MeV γ-ray beam from non-linear Thomson scattering

G. Sarri,1 D. J. Corvan,1 W. Schumaker,2 J. Cole,3 A. Di Piazza,4 H. Ahmed,1 C. Harvey,1 C. H. Keitel,4 K. Krushelnick,2 S. P. D. Mangles,3 Z. Najmudin,3 D. Symes,5 A. G. R. Thomas,2 M. Yeung,6 Z. Zhao,2 and M. Zepf1,6
(γ,n) Activation as a β⁺ Source

NaI Scintillator

Si Target

Nal Scintillator

28Si → 27Si

28Si + γ → 28Si

27Al

+ n

e⁻ + 28Si → e⁺ + 28Si

MICHIGAN ENGINEERING
UNIVERSITY OF MICHIGAN
Activation of U238 and silicon as a gamma-beam diagnostic

Graphs showing the activation of different isotopes as a function of energy and time.

- Graph a) shows the cross-section (σ) for different isotopes (239Pu, 235U, 238U) as a function of energy (MeV).

- Graph b) shows the measured activity over time for high-purity silicon (>99.999%) with raw data and a 5 s moving average.

- Graphs below show the energy spectrum for specific isotopes:
 - 134I (847 keV) and 134I (884 keV).
 - 92Sr (1386 keV) and 138Cs (1436 keV).
Tools for solid and gas target studies as we approach the radiation dominant regime

- High intensity & high contrast sources: $\sim 10^{22} \text{W/cm}^2$ & $\sim 10^{-12}$
- Ion imaging & spectroscopy: 10-20 MeV to 30 nm thin
- Electron & positron divergence & spectroscopy:
- X-ray divergence & spectroscopy: Nuclear activation & Compton scattering: 6-18 MeV @ High Brilliance
Thank You

Funding provided by: DTRA, AFOSR, ARO, NSF, DARPA, DOE, DNDO, University of Michigan, EPSRC and the Leverhulme Trust
CUOS High-Field Science Group

3 Teaching Faculty
Karl Krushelnick
Alec Thomas
Louise Willingale

3 Research Faculty
Tolya Maksimchuk
John Nees
Victor Yanovsky

Recently graduated
Paul Cummings
Franklin Dollar
Chris McGuffey
Will Schumacher
Calvin Zulick

9 PhD Students / Postdocs
Thomas Batson
Keegan Behm
Jungmoo Hah
Zhaohan He
Archis Joglekar
Andrew McKelvey
Anthony Raymond
Tony Zhao

Vladimir Chvykov
ELI-HU
Bixue Hou
k-Space-Ann Arbor

Recent Collaborators: