Nuclear Physics Research at the High Intensity Gamma-ray Source (HIγS) at TUNL

Calvin R. Howell
Duke University
and
Triangle Universities Nuclear Laboratory (TUNL)
December 14, 2015

International Meeting on Laser-Driven Radiation Sources for Nuclear Applications

Outline

• Basic Research

• Applications of Photonuclear Reaction Measurements
 1. Nuclear Resonance Fluorescence (NRF)
 2. Photofission
 – real-time detection of neutrons
 – fission product yields
H\textsubscript{\textgamma}S: Intracavity Compton-back Scattering

How it works

\[E_\gamma \equiv \hbar \omega' = \frac{\hbar \omega (1 - \beta \cos \theta_i)}{1 - \beta \cos \theta_f + \frac{\hbar \omega}{\epsilon_e} (1 - \cos \theta_{ph})} \]

Example: \(E_e = 500 \text{ MeV} \Rightarrow \gamma = 978 \)

- \(\lambda_{\text{FEL}} = 400 \text{ nm} \)
- \(\hbar \omega = 3.11 \text{ eV} \)
- \(E_\gamma = 11.9 \text{ MeV} \)
Most intense Compton γ-ray source in the world

Features that enable basic and applied research
• Wide beam energy range: 1 to 100 MeV
• Selectable beam energy spread (by collimation)
• High beam intensity on target ($>10^6 \gamma$/s @ $\Delta E/E = 5\%$)
• >95% beam polarization (linear and circular)

1.2 GeV Storage Ring FEL

Energy resolution by collimation

$E_\gamma = 2032$ keV
$\Delta E_\gamma = 26$ keV
$\Delta E/E = 1.3\%$
Studies of Strongly Interacting Matter at H\(\gamma\)S

From 2007 Nuclear Science LRP

- **Physics of Hadrons**
 - Degrees of Freedom: quarks, gluons
 - Energy (MeV): 940 neutron mass
 - Constituent quarks
 - Degrees of Freedom: baryons, mesons
 - Energy (MeV): 140 pion mass
 - Quark masses

- **Physics of Nuclei**
 - Degrees of Freedom: protons, neutrons
 - Energy (MeV): 8 proton separation energy in lead
 - Nuclear densities and currents
 - Energy (MeV): 1.32 vibrational state in tin
 - Degrees of Freedom: collective coordinates
 - Energy (MeV): 0.043 rotational state in uranium

Compton Scattering
- Nucleon electric and magnetic polarizabilities
- Nucleon spin polarizabilities

Photo-pion Production

Nuclear Structure
- NRF, \((\gamma,\gamma')\), Compton Scattering
- \((\gamma,n)\) reactions, photofission

Nuclear Astrophysics
- \((\gamma,\alpha)\), \((\gamma,n)\) reactions

Milestones (2007 LRP):
- NS6: collective modes in many-body nuclei
- HP10: ab initio microscopic studies
- NA4:

GDH Sum Rule
- \(^2\text{H}\)
- \(^3\text{He}\)

Few-nucleon Systems
- photodisintegration

Duke University
NC State University
The University of North Carolina at Chapel Hill

LDRE - Dec, 2015
HλγS Users (2010-2014)

<table>
<thead>
<tr>
<th>US Collaborating Institutions</th>
<th>Non-US Collaborating Institutions</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>17</td>
<td>40</td>
</tr>
</tbody>
</table>

Collaborating Institutions at HIGS

- **US Collaborating Institutions (57%)**
 - American Science and Engineering (AS&E)
 - Argonne National Laboratory, Argonne, IL
 - European Space Agency (ESA)
 - Fakultat fur Physik, LMU München, Garching, Germany
 - Fermi National Accelerator Laboratory, Batavia, IL
 - Frankfurt Institute for Advanced Studies FIAS, Frankfurt, Germany
 - George Washington University, Washington, DC
 - GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
 - Hebrew University of Jerusalem, Israel
 - IKP, TU Darmstadt, Darmstadt, Germany
 - Institut für Strahlenphysik, Dresden, Germany
 - James Madison University
 - Japanese Atomic Energy Agency (JAEA)
 - Kayoto University
 - Lawrence Berkeley National Laboratory
 - Lawrence Livermore National Laboratory
 - Los Alamos National Laboratory
 - National Aeronautics and Space Administration (NASA)
 - National Ignition Facility (NIF)
 - NSC Kharkov Institute of Physics and Technology, Kharkov, Ukraine

- **Non-US Collaborating Institutions (43%)**
 - North Carolina Central University, Durham, NC
 - Pacific Northwest National Laboratory
 - PTB, Braunschweig, Germany
 - Rutgers, The State University of New Jersey, Piscataway, New Jersey
 - Temple University
 - Thomas Jefferson National Accelerator Facility
 - Universität zu Köln, Köln, Germany
 - University of California Berkeley
 - University of Connecticut, CT
 - University of Illinois, Urbana-Champaign, Illinois
 - University of Kentucky, Lexington, Kentucky
 - University of Lund, Lund, Sweden
 - University of Massachusetts, Amherst MA
 - University of New Hampshire, Durham, NH
 - University of Notre Dame
 - University of Saskatchewan
 - University of Saskatchewan, Saskatoon, SK, Canada
 - University of Virginia, Charlottesville, VA
 - Weizmann Institute, Israel
 - WNSL, Yale University, New Haven, CT
HlγS: Topical groups (collaborators with TUNL faculty)

1. Nuclear Structure and Nuclear Astrophysics:
 (a) Volker Werner, Yale University
 (b) Deniz Savran, Univ. Frankfurt and GSI
 (c) Norbert Pietralla, Univ. Darmstadt
 (d) R. Schwengner, Helmholtz-Zentrum Dresden-Rossendorf
 (e) Moshe Gai, Univ. Conn.
 (f) Ernst Rehm, ANL
 (g) Michael Wiescher, Univ. of Notre Dame
 (h) Steve Yates, Univ. of Kentucky

2. Compton Scattering: Nucleon and Nuclear Polarizabilities
 (a) J. Feldman, GWU
 (b) B. Norum and D. Crabb, UVA
 (c) D. Hornidge, Mt. Allison Univ., Canada
 (d) R. Miskimen, U. Mass

3. Gerasimov-Drell-Hearn (GDH) Sum Rule
 (a) B. Norum and D. Crabb, UVA
 (b) R. Pywell, Univ. of Saskatchewan
The mass of the iron core at the end nuclear energy generation has a critical influence on the fate of a massive star, i.e., $M > 15 \, M_\odot$, core mass $> 2.0 \, M_\odot \rightarrow$ black hole
lower mass cores explode easier \rightarrow neutron stars

The mass and size of the final iron core is critically dependent on the $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ reaction rate

\[\alpha + \alpha + \alpha \rightarrow ^{12}\text{C} + \gamma \; ; \text{production of } ^{12}\text{C} \text{ during helium burning} \]

\[^{12}\text{C} + \alpha \rightarrow ^{16}\text{O} + \gamma \; ; \text{converts } ^{12}\text{C} \text{ to } ^{16}\text{O} \]

\[\rightarrow \text{determines } ^{12}\text{C}/^{16}\text{O} \]

Need to determine the $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$ cross section
$\Delta\sigma < 10\%$ at $E_{\text{cm}} = 300 \, \text{keV}$ ($0.2 \times 10^9 \, \text{K}$)

Collaboration 1: M.W. Ahmed (NCCU), M. Gai (U. Conn.) and H.R. Weller (Duke)
Technique: CO$_2$ gas target (Optical Time Projection Chamber)

Collaboration 2: E. Rehm (ANL), C. Ugalde (ANL) and A.E. Champagne (UNC)
Technique: Superheated liquid bubble chamber

Faculty: M.W. Ahmed, H.R. Weller
Collaborator: M. Gai (Univ. Connecticut)

Technique: CO$_2$ filled Optical Time Project Chamber (OTPC)
Collective Excitations of Nuclei

- M1
- E1
- Xλ ?
- p,n
- E1
- NRF
- Compton scattering
- Pygmy Dipole Resonance
- Isovector Giant Quadrupole Resonance

Cross Section

- 1
- 5
- 10
- 20

E_x

- (γ,γ)
- (γ,n)
- (γ,2n)
- (γ,p)
- (γ,3n)
- (γ,Xn)
- (γ,abs)
Nuclear Resonance Fluorescence (NRF): Spin and Parity Determination in Even-Mass Nuclei

$0^+ \rightarrow 1^{(+,-)} \rightarrow 0^+$

$0^+ \rightarrow 2^+ \rightarrow 0^+$

$^{138}\text{Ba}(\gamma,\gamma') \ E_\gamma = 5.40 \text{ MeV}$
Nuclear Resonance Fluorescence (NRF): Spin and Parity Determination in Even-Mass Nuclei

138Ba(\gamma,\gamma') E_\gamma = 5.40 MeV

\[0^+ \rightarrow 1^{(+,-)} \rightarrow 0^+ \]
\[0^+ \rightarrow 2^+ \rightarrow 0^+ \]

Precise Determination of the Isovector Giant Quadrupole Resonances

Experiment Setup

\[
\frac{\sigma_{\parallel}}{\sigma_{\perp}} = \cos^2 \theta + \frac{2|f_{E2}|\cos(\phi_{E2} - \phi_{E1})[\cos^3 \theta - \cos \theta]}{|f_{E1} + D(E_\gamma, \theta)|}
\]

Nuclear Equation of State

\[
E(\rho, \beta) = E(\rho, \beta = 0) + S(\rho)\beta^2
\]

\[
\rho = \rho_n + \rho_p; \quad \beta = (\rho_n - \rho_p)/\rho
\]

\[
S(\rho) = E(\rho, \beta = 1) - E(\rho, \beta = 0)
\]

\[
S(\rho) = \left[S_v + \frac{L}{3} \frac{\rho - \rho_s}{\rho_s} + \frac{K_{sym}}{18} \left(\frac{\rho - \rho_s}{\rho_s} \right)^2 \right] + \ldots
\]

\[
S_v = \frac{1}{8} \left[\frac{\partial^2 E}{\partial \beta^2} \right]_{\rho_s, \beta = 1}
\]

\[
L = \frac{3}{8} \frac{\partial^3 E}{\partial \rho \partial \beta^2} \bigg|_{\rho_s, \beta = 1}
\]

\[
K_{sym} = \frac{9}{8} \frac{\partial^4 E}{\partial \rho^2 \partial \beta^2} \bigg|_{\rho_s, \beta = 1}
\]
Measure/determine quantities that can be calculated both by Lattice QCD and \(\chi \)EFT

- GDH sum rule on the deuteron (spin-dependent cross section)
- Electric and magnetic polarizabilities of the nucleons
- Spin dependent polarizabilities of the nucleons
- \(m_u/m_d \) via polarized photopion production (test of \(\chi \)PT)
- Hadronic weak low-energy parameter in EFT (parity violating measurement of photodisintegration of the deuteron)
GDH (Gerasimov-Drell-Hearn) Sum Rule

Relates the helicity dependence of the photoabsorption cross section of a nucleon/nucleus to its static properties, i.e., magnetic moment, mass and spin: provides opportunities to gain insight about the dynamical response of the internal dof of nucleons to EM impulses over a broad frequency band

\[I_{GDH} = \int_0^\infty \frac{\sigma_P^N - \sigma_A^N}{\omega} d\omega = 4\pi^2 \left(\frac{e}{M} \right)^2 \kappa^2 S \]

Derived by applying dispersive analysis and assuming:
- Lorentz invariance
- Gauge invariance
- Crossing symmetry
- Rotational invariance
- Causality and
- Unitarity

Baldin sum rule:
\[\alpha_E + \beta_M = \frac{1}{2\pi^2} \int_0^\infty \frac{\sigma_P^N - \sigma_A^N}{\omega^2} d\omega \]

Forward spin polarizability:
\[\gamma_0 = -\frac{1}{4\pi^2} \int_0^\infty \frac{\sigma_P^N - \sigma_A^N}{\omega^3} d\omega \]
Recent accomplishments and plans for GDH on ^2H

$$^2\text{H} + \gamma \rightarrow n + p$$

$$\int_0^\infty \frac{\sigma_p^d - \sigma_A^d}{\omega} d\omega = \int_0^{\omega_x} \frac{\sigma_p^d - \sigma_A^d}{\omega} d\omega + \int_{\omega_x}^{\omega_{\text{max}}} \frac{\sigma_p^d - \sigma_A^d}{\omega} d\omega + \int_{\omega_{\text{max}}}^{\infty} \frac{\sigma_p^d - \sigma_A^d}{\omega} d\omega$$

0.6 μb Measurements at HIγS

Calculated -14 μb

Measurements at HIγS:
Recent measurements and plans for GDH on 3He

3He + γ → n + p + p (3-body channel)

Data taken on 2-body channel; analysis underway

3He + γ → p + d

Future: push to higher energies, up to ~50 MeV

Collective responses of internal structure of nucleons

Focus is on $E_\gamma < 500$ MeV

$$\lambda = \frac{\hbar c}{E_\gamma} \Rightarrow \lambda > 0.4 \text{ fm}$$

Most sensitive to the nucleon-(virtual pion cloud) DoF

Pion-cloud physics

Compton Scattering: Nucleon Polarizabilities

Multipole expansion

\[T_{fi} = \frac{4\pi}{M} W \sum_{i=1}^{6} \rho_i R_i(\omega, z). \]

Scalar polarizabilities

\[\alpha_{E1}(\omega) = \left[2 f_{EE}^{1+}(\omega) + f_{EE}^{1-}(\omega) \right] / \omega^2, \]
\[\beta_{M1}(\omega) = \left[2 f_{MM}^{1+}(\omega) + f_{MM}^{1-}(\omega) \right] / \omega^2, \]
\[\alpha_{E2}(\omega) = 36 \left[3 f_{EE}^{2+}(\omega) + 2 f_{EE}^{2-}(\omega) \right] / \omega^4, \]
\[\beta_{M2}(\omega) = 36 \left[3 f_{MM}^{2+}(\omega) + 2 f_{MM}^{2-}(\omega) \right] / \omega^4. \]

Spin-dependent polarizabilities

\[\gamma_{E1E1}(\omega) = \left[f_{EE}^{1+}(\omega) - f_{EE}^{1-}(\omega) \right] / \omega^3 \quad (E1 \rightarrow E1), \]
\[\gamma_{M1M1}(\omega) = \left[f_{MM}^{1+}(\omega) - f_{MM}^{1-}(\omega) \right] / \omega^3 \quad (M1 \rightarrow M1), \]
\[\gamma_{E1M2}(\omega) = 6 f_{EM}^{1+}(\omega) / \omega^3 \quad (E1 \rightarrow M2), \]
\[\gamma_{M1E2}(\omega) = 6 f_{EM}^{1+}(\omega) / \omega^3 \quad (M1 \rightarrow E2). \]

Compton Scattering: Nucleon Polarizabilities

$d = 4\pi\alpha\Delta E1(\omega)E(\omega)$

$m = 4\pi\beta\Delta M1(\omega)B(\omega)$

Provides insights about:
- Freq. response of system
- Binding energy of charged constituents
- Confinement volume of charged constituents
- $\Delta\beta_n$ causes a significant uncertainty in calc. m_n-m_p
- β_p input to Lamb-shift corr. In μH atoms
- Collective response of internal spin dof to em pulse

Expt. goals:
- sum-rule independent meas. of β_p
- reduce $\Delta\beta_n$ by \sim factor of 2

Measuring spin polarizabilities

\(E_\gamma > 110 \text{ MeV} \)

Beam and target polarization

\[
\Sigma_{2x} = \frac{\sigma^\uparrow - \sigma^\downarrow}{\sigma^\uparrow + \sigma^\downarrow}
\]

Circular polarization

\[
\Sigma_{2z} = \frac{\sigma^\to - \sigma^\leftarrow}{\sigma^\to + \sigma^\leftarrow}
\]

Circular polarization

\[
\Sigma_3 = \frac{\sigma^\parallel - \sigma^\perp}{\sigma^\parallel + \sigma^\perp}
\]

Linear polarization

Sensitive to \(\gamma_{E1E1} \)

Sensitive to \(\gamma_{M1M1} \) and \(\gamma_\pi \)

Sensitive to \(\gamma_{E1E1} \) and \(\gamma_{M1M1} \)
H\(\gamma\)S: Nuclear Physics Applications

A. National Nuclear Security
 • Stockpile Stewardship
 • Nuclear weapons non-proliferation treaty verification

B. Homeland Security
 • Technologies for screening cargo for special nuclear materials
 • Development of particle detection technologies

C. Energy
 • Nuclear Fusion – Inertial confinement diagnostics (NIF)
 – gamma-ray detector R&D (LANL group)

D. Medicine and contraband detection
 • \(\gamma\)-ray beam biopsy, i.e., tissue isotopic assay
 • Isotopic imaging for medical diagnostics
Active Interrogation Systems
\(\sigma(\gamma,\gamma')\) data using Nuclear Resonance Fluorescence (NRF)

Need to identify J=1 states in actinides that can be photoexcited with 2 < \(E_\gamma\) < 4 MeV
The Challenge of finding low-spin states at $E_x > 2$ MeV in heavy nuclei
Challenge of finding low-spin states at $E_x > 2$ MeV (non band states)
NRF Measurement Strategy

• *Use Bremsstrahlung beam to conduct a search for dipole transitions over a broad γ-ray energy range, e.g. $(2 < E_\gamma < 4 \text{ MeV})$*

• *Next use monoenergetic γ-ray beam to make high sensitivity measurements at selected energies based on results obtained with bremsstrahlung beams. Use linear polarization to provide information about the multipolarity of the observed γ-ray transitions.*
H\(\gamma\)S: NRF on Radioactive materials

Target: \(^{240}\text{Pu}\)

\[E_\gamma = 2.55 \text{ MeV, horizontal HPGe detector (5 hrs 21 min)} \]

\[T = 180 \text{ ns} \]
240Pu: Determination of Spin and Parity

Runs 330, 334 (5 hr 21 min) - $^{240}\text{Pu} @ 2.55\text{ MeV}$

Horizontal and Vertical RF Subtracted

Energy (keV)

Counts

Energy (keV)

J^π

E_x

2^+

0^+

42.8

0.0

^{240}Pu
NRF at excitation energies above the particle separation thresholds, e.g., \((\gamma, \alpha), (\gamma, n), (\gamma, p)\)

\[
I_{s0} = \int_{0}^{\infty} \sigma_{\gamma,\gamma_{0}}(E)dE = \left(\frac{2J + 1}{2J_{0} + 1}\right) \left(\frac{\pi \hbar c}{E_{\gamma}}\right)^{2} \frac{\Gamma_{0}^{2}}{\Gamma}
\]

\[
\Gamma = \Gamma_{0} + \sum \Gamma_{i}
\]

Because \(g_{N} \sim x137\ \alpha\), expect \(\Gamma_{3} >> \Gamma_{0}, \Gamma_{1}, \Gamma_{2}\)

However, there are exceptions ➔ Isobaric analog states

Let thresholds for \((\gamma, \alpha)\) and \((\gamma, p)\) be higher than that for \((\gamma, n)\)
NRF Measurements on Light Nuclei

<table>
<thead>
<tr>
<th>Targets</th>
<th>Isotopes</th>
<th>Energy (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄Cl, NaCl, KNO₃</td>
<td>¹⁴N, ³⁵Cl, ³⁷Cl, ³⁹K</td>
<td>1.7 – 3.1</td>
</tr>
<tr>
<td>natMg metal</td>
<td>²⁴Mg</td>
<td>9.4 – 10.7</td>
</tr>
<tr>
<td>natC (graphite)</td>
<td>¹²C</td>
<td>15.1 – 15.3</td>
</tr>
</tbody>
</table>

Graphs:

1. **NaCl - 2.99 MeV (8.4 hr)**
 - 90 Deg. In Plane
 - 90 Deg. Out of Plane
 - 135 Deg. In Plane

2. **NaCl - 2.99 MeV (8.4 hr)**
 - Gamma Beam
 - 60 Deg. In Plane
 - 60 Deg. Out of Plane
 - 135 Deg. In Plane

Counts vs. Energy (keV) for different angles and isotopes.
- Polarized γ-ray induces fission of target nuclei
- Prompt neutrons are detected both parallel and perpendicular to the plane of polarization of the incident γ-ray
Setup for photofission measurements

\(\gamma \)-ray beam
Typical energy range $E_\gamma = 5.8 - 7.0$ MeV

Only other stable isotopes which can produce neutrons at these energies are 2H and 9Be

The neutron energy detection threshold is 1.5 MeV (all neutrons are fission neutrons)
Example of neutron assembly of fissile vs nonfissile nucleus in Polarized Photofission

Counts/hr/g at 90° in θ, Eγ = 5.8 - 6.2 MeV, ~ 5×10^6 γ/s

- __235U parallel yield__
- __235U perpendicular yield__
- __238U parallel yield__
- __238U perpendicular yield__
Measurements of neutron assembly in polarized photofission

Ratio at 90° in θ, $E_n > 1.5$ MeV

R_n

Non-fissile

Fissile

Acknowledgement

Materials provided for this presentation by:
Mohammad Ahmed, North Carolina Central University and TUNL
Werner Tornow and Henry Weller, Duke University and TUNL

Research presented is in part supported by:
• Department of Energy, Office of Nuclear Physics
• Department of Energy, National Nuclear Security Administration
• Department of Homeland Security, Domestic Nuclear Detection Office