A Study of the Nucleon Electromagnetic Response:
the Compton@HIγS Program

Dr. Mark Sikora
The George Washington University and
Triangle Universities Nuclear Laboratory (TUNL)

The electromagnetic properties of the nucleon arise from its composite nature. External electric and magnetic fields induce dipole moments which are described by the scalar polarizabilities (α_N and β_N), while the response of the nucleon spin is described by four spin polarizabilities. Consequently, studying these observables provides a window into the interaction among the constituent charges and currents in the nucleon, described theoretically by QCD. High-precision measurements of the scalar and spin polarizabilities provide critical benchmarks for studying the low-energy, non-perturbative regime of QCD and emerging calculations from lattice QCD and Chiral Effective Field Theories. To this end, a program of Compton scattering experiments on light nuclei is underway at the High Intensity Gamma Source (HIγS) at Duke University, with the aim of providing the world’s most precise measurements of the polarizabilities.

TIME: 4:00-5:00 pm, Thursday, October 4, 2018
(refreshments: 3:30 pm upstairs by the 4th floor pantry)

PLACE: 101 Corcoran Hall, GWU
725 21st Street, NW

METRO STATION: GWU/FOGGY BOTTOM (BLUE & ORANGE LINES)